Hai Puys
I found this problem in LOD 3 of arun sharma......... chapter- Numbers.
What is the remainder of 32^32^32 divided by 9 ......
answer provided is 4 .
another problem stated the remiander of 32^32^32 divided by 7 ..in this case also the answer is 4.
i didnt understand the solution that they provided .can someone help me out???:idea:
see this
this should help you
1)remainder when (32^32^32)/7
= {32}^32^32 =
start from top exponent....
32 mod 7 = 4 mod 7 = 4
32^2 mod 7 = 4^2 mod 7 = 16 mod 7 = 2
32^4 mod 7 = 2^2 mod 7 = 4 mod 7 = 4
32^8 mod 7 = 4^2 mod 7 = 16 mod 7 = 2
32^16 mod 7 = 2^2 mod 7 = 4 mod 7 = 4
32^32 mod 7 = 4^2 mod 7 = 16 mod 7 = 2
so , 2
(32^32)^2 mod 7 = 2^2 mod 7 = 4 mod 7 = 4
(32^32)^4 mod 7 = 4^2 mod 7 =16 mod 7 = 2
(32^32)^8 mod 7 = 2^2 mod 7 = 4 mod 7 = 4
(32^32)^16 mod 7 = 4^2 mod 7 =16 mod 7 = 2
(32^32)^32 mod 7 = 2^2 mod 7 = 4 mod 7 = 4
so ans is : 4
2)remainder when (32^32^32)/9
= {32}^32^32 =
start from top exponent....
32 mod 9 = 5 mod 9 = 5
32^2 mod 9 = 5^2 mod 9 = 25 mod 9 = 7
32^4 mod 9 = 7^2 mod 9 = 49 mod 9 = 4
32^8 mod 9 = 4^2 mod 9 = 16 mod 9 = 7
32^16 mod 9 = 7^2 mod 9 =49 mod 9 = 4
32^32 mod 9 = 4^2 mod 9 = 16 mod 9 = 7
so , 7
(32^32)^2 mod 9 = 7^2 mod 9 = 49 mod 9 = 4
(32^32)^4 mod 9 = 4^2 mod 9 = 16 mod 9 = 7
(32^32)^8 mod 9 = 7^2 mod 9 = 49 mod 9 = 4
(32^32)^16 mod 9 = 4^2 mod 9 = 16 mod 9 = 7
(32^32)^32 mod 9 = 7^2 mod 9 = 49 mod 9 = 4
so ans is : 4